

Application & Adoption of **Lubrizol** Rigorous Mixing Discipline into a Pilot Plant Environment

Cliff Kowall, Senior Process Development Engineer **Lubrizol Corporation** July 15, 2011

Updated copyright to 2011 Catherine Kopanski, 16/06/2011 CMK1

Presentation Outline CMK7

- Mixing is important to The Lubrizol Corporation
- Recognized need for and benefit of better mixing
 CMK14 knowledge
 - Determined potential tools to meet the need
 - Selected tools & developed knowledge base
 - Determined potential for creating value
 - Searched for applications & successes
 - Adoption & general introduction
 - Lessons learned

CMK2

Capitalized The Catherine Kopanski, 16/06/2011

СМКЗ Added "for"

Catherine Kopanski, 16/06/2011

Deleted underlines on title throughout presentation and standardized on 28 points. Catherine Kopanski, 16/06/2011CMK7

Added some wording to make bullet points more parallel. Catherine Kopanski, 16/06/2011 **CMK14**

The Lubrizol Corporation

The Lubrizol Corporation was founded in 1928.

- CMK4
- We are an innovative specialty chemical company with consolidated revenue of \$5.4 billion for the year ended December 31, 2010.
- We supply technologies and produce additives, ingredients, resins and compounds for the global transportation, industrial and consumer markets
 - Lubrizol's industry-leading technologies in additives, ingredients and compounds enhance the quality, performance and value of customers' products, while reducing their environmental impact.
 - Our products are used in a broad range of applications
 - Relatively stable markets such as those for engine oils, specialty driveline lubricants and metalworking fluid
 - Higher-growth markets such as those for personal care and over-the-counter pharmaceutical products, performance coatings, medical products and compressor lubricants.
 - We are organized into two operating and reportable segments
 - Lubrizol Additives
 - Lubrizol Advanced Materials

Reference: Lubrizol Corporation SEC 10-K filed 2/25/2011

CMK4 Added "We are" to beginning of sentence

Changed revenue to \$5.4 billion Catherine Kopanski, 16/06/2011

I broke the second bullet point into two separate bullets. Catherine Kopanski, 16/06/2011 CMK5

CMK8 Added "The" in front of Lubrizol Corporation

Catherine Kopanski, 16/06/2011

Lubrizol 2010 Performance

2010 Global Sales Volume %

■ North America ■ Europe

■ Asia-Pacific/Middle East ■ Latin America

2010 Revenues

\$5.4 Billion in Revenue 2010

Reference: Lubrizol Corporation SEC 10-K filed 2/25/2011

Changed this to 5.4 billion Catherine Kopanski, 16/06/2011 СМК6

Lubrizol Additives Principal Manufacturing Locations

Blending of a Fully Functional Oil

Other variables:

•Relative concentration

Specific application

Packaging

Specification

pour point depressants that control low temperature fluid thickening

polymer-based viscosity modifiers that allow lubricants

antioxidants that retard oil thickening

anti-wear agents that prevent metal-to-metal contact of surfaces

to operate over broad temperature ranges

corrosion inhibitors that prevent rust

detergents that prevent deposit build-up

dispersants that protect equipment by suspending contaminant particles

friction modifiers that control friction at surfaces

Oil from refinery

Performance Additives

Reference: Lubrizol 2009 Annual Report page 2 of part 1

Summary of Typical Mixing Situations CMK9

Adjusted capitalization for consistency. Catherine Kopanski, 16/06/2011 СМК9

Objective of Mixing Knowledge Center

Trajectory for Development of Mixing Activity

1st Step Results

- Value based on better consistency & optimized equipment use
- Resources need to be expanded
 - Usual modeling software does not handle mixing
 - CFD is good but impractical for current situation
 - University support is limited
 - Timeliness
 - · Academic vs industrial approach
 - Continuity of graduate students
 - Intellectual property and knowledge protection
 - External consultants
 - Expensive
 - Long company learning curve
 - Difficult to engage fully
 - Variable knowledge base
- Concluded that internal expertise is preferred

Computational Fluid Dynamics Tools

- CFD is traditional tool
- Advantages:
 - Visually appealing
 - Multiple variables
 - Multiple visual feedback
- Disadvantages:
 - Expensive software
 - Special computers
 - Computationally intensive
 - Validation against data
 - Highly trained users
 - Not plant friendly
- Conclusion:
 - CFD may have niche applications but is not suitable for general use

2nd Step Results

es CMK10

- Developed knowledge of correlation-based approaches
- Searched for non-CFD based mixing programs
- Found VisiMix[™] software being used in other parts of company
- Established contact with VisiMix[™] company
 - Trial copy for evaluation
 - Validation
 - Tracer wcmk11
 - Compared with correlations
 - Visual work was useful for communication to uninitiated
 - Justified one license
- Applied to larger applications outside of the lab
- Realized the need for better archive data on mixing vessels

Changed Develop to Developed Catherine Kopanski, 16/06/2011 CMK10

CMK11 Change compared to compared Catherine Kopanski, 16/06/2011

Simple Correlation Computation Tools

- Based on flow number and power number
- Easy to use for approximate results
- Power number: $N_P = 1.37 (\frac{W_b}{0.2D})^{0.8} (\frac{N_b}{4})^{0.6} (\frac{\sin \theta_b}{\sin 45})^3$ for a axial impeller
- Computed power: $P = N_P \rho N^3 D^5$
- Flow number: $N_O = 0.77 N_P^{0.33}$
- Pumping rate: $Q = N_Q N D^3$
- Blend time: $t = \frac{4.605}{0.641N(\frac{D}{T})^{2.19}(\frac{T}{Z})^{0.5}}$

Laboratory Work to Validate Tools

Comparative Results on Lab Bench

Method Employed	Mixing Time	Comments	
Observed	44 sec	Still some trace of dye near agitator	
Correlative	28 sec	Observably too short	
VisiMix™	60 sec		

Based on laboratory observations in glass vessel using water, dye tracer and an axial impeller

Conclusions:

- Given observational variation the VisiMix[™] results were generally considered more reasonable
- A standardized program is preferred over the correlative approach for use beyond pilot plant and for knowledge transfer

Deleted periods in bullet points. Catherine Kopanski, 16/06/2011 CMK12

Current Status

- Wide adoption of VisiMix[™] software
 - Network licenses
 - Training for all engineers
 - Identified both an operational and a computational focus person
 - Communicated need for better data
 - Began more formal archiving of key design information
 - Vessel characteristics
 - Internals
 - Materials of construction
- Use as a daily tool for operational work as well as design of new equipment

Example: Placement of Dual Agitators in Reactor

Application to position agitator in reactor

- •Key was to maximize pumping to surface
- Existing reactor but adjustable impeller
- •Quick study showed:
 - Height from bottom had minimal effect
 - Distance between impellors has minimal effect
 - Pitch of the blades had significant effect

•Net result:

- Adjusted impellers before start-up
- Increase in circulation flow by 18%
- Cost was power increase of 27%
- Benefit was better contacting & higher conversion

Goals & Progression of Mixing Knowledge

CMK13

Empirical Understanding	Technical Understanding	Technical Tools	Adoption & Implementation
-based on standard 'recipes' -variable use of equipment -knowledge resides with experienced personnel -variation based on location	-more thorough recipe definitions -include specification on equipment and conditions -more instrumentation -facilitate knowledge transfer	-better process documentation -more reliable scale-up -facilitate communication between engineers -more efficient use of capital now and future -extend to new products & equipment	-demonstrate successes -provide tools -train engineers in use of tools -standard methods of analysis

Capitalization is inconsistent Catherine Kopanski, 16/06/2011 **CMK13**

Lessons Learned & Conclusions

- Mixing had been a neglected area of technical attention within our company
- Value can best be generated by actual application in plants
- Value will be maximized by distributed knowledge among the plants and technical areas
- Outside resources are useful but internal expertise is more timely for actual applications
- Central expertise should be available for interpretation and deeper study
- VisiMix[™] software is a simple & effective tool which is easily used by all engineers